Skip to main content
Liz

Liz

Follow your heart

MCP Technical Overview

MCP Technical Overview

  • Concept, Evolution, and Significance of MCP
  • MCP Architecture, Core Components, and Function Types
  • MCP Client and MCP Server
  • How Different Roles Use MCP

LizAbout 8 minLLMMCP
EasyR1 + Verl + Ray + QwenVL + GRPO

EasyR1 + Verl + Ray + QwenVL + GRPO

  • Background Introduction
  • GRPO Four Main Steps
  • Implementation of GRPO Training Code Using EasyR1
  • Practical Record of GRPO Training Details

LizAbout 5 minLLMEasyR1VerlRayQwenVLGRPO
SFTTrainer Source Code Exploration: Prepare Train

SFTTrainer Source Code Exploration: Prepare Train

  • Prepare Train Overall Logic
  • Prepare Train Code Details
    • _inner_training_loop
    • training_step
    • compute_loss
    • PeftModelForCausalLM.forward
    • Linear4bit.forward

LizAbout 5 minLLMSFTTrainerSource CodePrepare Train
SFTTrainer Source Code Exploration: Prepare Dataset

SFTTrainer Source Code Exploration: Prepare Dataset

  • Prepare Dataset Overall Logic
  • Prepare Dataset Code Details
    • SFTTrainer.init
    • DataCollatorForLanguageModeling
    • _prepare_dataset

LizAbout 3 minLLMSFTTrainerSource CodePrepare Dataset
SFTTrainer Source Code Exploration: Prepare Model

SFTTrainer Source Code Exploration: Prepare Model

  • Prepare Model Overall Logic
  • Prepare Model Code Details
    • _prepare_peft_model
    • PeftModelForCausalLM.init
    • PeftModel.init
    • LoraModel.init
    • Linear4bit.init
    • LoraLayer.init(self, base_layer)

LizAbout 5 minLLMSFTTrainerSource CodePrepare Model
QLoRA Code Implementation and Process Analysis

QLoRA Code Implementation and Process Analysis

  • Background Introduction: QLoRA / Base Model / Dataset
  • QLoRA Code Implementation
  • QLoRA Process Analysis
  • QLoRA Application Value
  • QLoRA Questions and Thoughts
  • QLoRA Details Supplement

LizAbout 11 minLLMQLoRA
GRPO + Unsloth + vLLM

GRPO + Unsloth + vLLM

  • How GRPO Works
  • GRPO vs PPO
  • Three Revolutionary Designs of GRPO
  • GRPO Code Implementation

LizAbout 10 minLLMGRPORLUnslothvLLM
Distributed Training Part 4: Parallel Strategies

Distributed Training Part 4: Parallel Strategies

  • Five Dimensions of Parallelization Strategies
    • batch dimension
    • hidden_state dimension
    • sequence dimension
    • model_layer dimension
    • model_expert dimension
  • Optimal Training Configuration
  • Tensor Parallelism(TP)
  • Sequence Parallelism (SP)
  • Context Parallelism (CP)
  • Pipeline parallelism (PP)
  • Expert Parallelism (PP)

LizAbout 9 minLLMDistributedParallelism